首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1545篇
  免费   169篇
  国内免费   75篇
电工技术   49篇
综合类   140篇
化学工业   35篇
金属工艺   14篇
机械仪表   109篇
建筑科学   61篇
矿业工程   10篇
能源动力   31篇
轻工业   31篇
水利工程   11篇
石油天然气   100篇
武器工业   10篇
无线电   435篇
一般工业技术   219篇
冶金工业   50篇
原子能技术   13篇
自动化技术   471篇
  2023年   22篇
  2022年   29篇
  2021年   33篇
  2020年   43篇
  2019年   34篇
  2018年   35篇
  2017年   46篇
  2016年   38篇
  2015年   63篇
  2014年   94篇
  2013年   121篇
  2012年   106篇
  2011年   115篇
  2010年   76篇
  2009年   88篇
  2008年   97篇
  2007年   118篇
  2006年   84篇
  2005年   73篇
  2004年   73篇
  2003年   60篇
  2002年   50篇
  2001年   50篇
  2000年   34篇
  1999年   38篇
  1998年   32篇
  1997年   19篇
  1996年   29篇
  1995年   15篇
  1994年   19篇
  1993年   9篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   9篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有1789条查询结果,搜索用时 265 毫秒
1.
The retinal ganglion cells (RGC) may be considered an easily accessible pathophysiological site of degenerative processes in neurological diseases, such as the RGC damage detectable in multiple sclerosis (MS) patients with (HON) and without a history of optic neuritis (NON). We aimed to assess and interrelate RGC functional and structural damage in different retinal layers and retinal sites. We included 12 NON patients, 11 HON patients and 14 healthy controls for cross-sectional multifocal pattern electroretinography (mfPERG) and optical coherence tomography (OCT) measurements. Amplitude and peak times of the mfPERG were assessed. Macula and disc OCT scans were acquired to determine macular retinal layer and peripapillary retinal nerve fiber layer (pRNFL) thickness. In both HON and NON patients the foveal N2 amplitude of the mfPERG was reduced compared to controls. The parafoveal P1 peak time was significantly reduced in HON only. For OCT, parafoveal (pfGCL) and perifoveal (pGCL) ganglion cell layer thicknesses were decreased in HON vs. controls, while pRNFL in the papillomacular bundle sector (PMB) showed reductions in both NON and HON. As the mfPERG derived N2 originates from RGC axons, these findings suggest foveal axonal dysfunction not only in HON, but also in NON patients.  相似文献   
2.
Optical interferometry is a powerful tool for measuring and characterizing areal surface topography in precision manufacturing. A variety of instruments based on optical interferometry have been developed to meet the measurement needs in various applications, but the existing techniques are simply not enough to meet the ever-increasing requirements in terms of accuracy, speed, robustness, and dynamic range, especially in on-line or on-machine conditions. This paper provides an in-depth perspective of surface topography reconstruction for optical interferometric measurements. Principles, configurations, and applications of typical optical interferometers with different capabilities and limitations are presented. Theoretical background and recent advances of fringe analysis algorithms, including coherence peak sensing and phase-shifting algorithm, are summarized. The new developments in measurement accuracy and repeatability, noise resistance, self-calibration ability, and computational efficiency are discussed. This paper also presents the new challenges that optical interferometry techniques are facing in surface topography measurement. To address these challenges, advanced techniques in image stitching, on-machine measurement, intelligent sampling, parallel computing, and deep learning are explored to improve the functional performance of optical interferometry in future manufacturing metrology.  相似文献   
3.
PurposeTo investigate the relationship between the real contact lens imprint into the conjunctival tissue, observed by optical coherence tomography (OCT) and conjunctival staining and contact lens wearing comfort.Methods17 participants (mean age = 26.6 SD ± 3.6 years; 7 females) were fitted with three different contact lenses base curves of the same silicone hydrogel custom lens type (Visell 50; Hecht Contactlinsen, Au, Germany) in a randomised order. One lens was optimally fitted according to the manufacturer's recommendation, one fitted 0.4 mm flatter and one fitted 0.4 mm steeper. After 4 h of lens wear the contact lens edge in the area of the conjunctiva was imaged nasally and temporally using OCT (Optovue iVue SD-OCT). To correct the artefact due to optical distortion with OCT, the imprint of all worn lenses was measured on a glass plate afterwards. Conjunctival staining in the limbal region after 4 h of lens wear was classified using the CCLRU Grading Scale. Comfort scoring was based on visual analog scales from 0 (very poor) to 100 (excellent).ResultsThe mean conjunctival imprint of all contact lens edges was 32.0 ± 8.1 μm before and 7.3 ± 6.5 μm after distortion correction of the OCT images. The distortion corrected conjunctival imprint with the 0.4 mm steeper lens (11.5 ± 6.2 μm) was statistically significantly greater compared to the optimally fitted lens (6.5 ± 5.9 μm) (One-way ANOVA followed Tukey-test; p = 0.017) and greater compared to the 0.4 mm flatter lens (3.9 ± 5.3 μm) (p < 0.001). There was no statistically significant difference between the optimally fitted lens and the 0.4 mm flatter lens (p = 0.209). The nasally measured imprint (11.4 ± 9.0 μm) was significantly greater than the temporally measured (3.3 ± 7.6 μm) (p < 0.001). There was no statistically significant correlation between the amount of conjunctival imprint and the graded conjunctival staining (p = 0.346) or the wearer’s comfort (p = 0.735).ConclusionsContact lens edges imaged by OCT exhibited displacement artefacts. The observed conjunctival imprints are a combination of real conjunctival compression and artefacts. A deeper imprint of the contact lens into the conjunctiva caused by a steeper base curve was not related to clinically significant staining or changes in comfort after 4 h of lens wear. The observed differences between nasal and temporal imprint are likely to be caused by variations of conjunctival thickness and the shape of the underlying sclera.  相似文献   
4.
Interfacial polymerization (IP) is one of the most important methods for fabricating thin film composite (TFC) membranes. Understanding the film-formation mechanisms is of great value for developing membranes with enhanced performance. This work proposed a novel method to in situ characterize the film-formation kinetics via low coherence interferometry (LCI). The polyamide film formed at the liquid–substrate interface was scanned in real time; the polymerization induced significant variations in the optical properties around the reaction zone. After mitigating the effects of the perturbed interface, the surface-averaged intensity profiles provide a solid basis for analyzing the film-formation kinetics at various depths. In particular, the effects of the monomer concentrations were investigated to reveal the asymmetric growth and development of irregular substructures. All the characterization results confirm that the LCI-based characterization is a powerful tool for studying the structural evolution of the IP layer and thereby providing deeper insights for optimizing TFC membranes.  相似文献   
5.
随着新的作战对象和作战样式的出现,以及作战环境更加复杂,仅依靠单个雷达节点的能力已经越来越难以满足新的作战需求。文中针对网络化雷达这一新体制雷达开展研究,通过分析国外网络化雷达系统发展现状、趋势及关键技术,总结对我国网络化雷达技术发展的经验启示,为我国网络化雷达系统发展提供技术参考。  相似文献   
6.
The accurate prediction of the visual comfort zone in an indoor environment is difficult as it depends on many parameters. This is especially the case for large compact urban areas in which the density and shadow from neighboring buildings can limit the accessible daylighting in indoor spaces. This paper investigates the satisfaction range for illuminance regarding indoor air temperature in office buildings and the significant parameters affecting this range in six office buildings in Tehran, Iran. Lighting comfort has been evaluated by a subjective survey (509 total responses) and field measurement. The questionnaires were filled out in 146 and 109 rooms in summer and winter, respectively. The results show that the illuminance should not be less than 550 lx, while illuminance between 600 and 650 lx provides the highest satisfaction level. The satisfaction with lighting level is affected by individual parameters such as age, type of activity, and environmental parameters such as window orientation, external obscurations, and season. A relationship was observed between lighting level satisfaction and thermal condition acceptance, and the overall comfort depends more on thermal conditions than the lighting level.  相似文献   
7.
改型Wollaston棱镜(MWP)无需中继,可构建微型傅里叶变换光谱仪。回顾了MWP的基本原理,从调制度定义出发,计算得到准单色光源的复相干度,找到调制度的影响因素——扩展视场、剪切结构、焦面探测等。建立一般的干涉定域分析模型后,由像点逆光路追迹给出MWP的厚度计算公式,代入调制度约束参数得到不同参量的误差容限。通过FRED记录不同视场扩展情况的灰度与辐照度,结果显示,调制度为0.9时,视场与理论估算值1.24°基本相符;不同剪切量的灰度与辐照度变化特性表明,结构角会使定域垂直系统光轴的入射角发生变化,与晶轴倾角共同影响双折射率差;2.5和8μm像元探测采样表现出调制度差异,描述了定域深度或离焦的影响。以准单色光源、复相干度表示调制度,可将不同影响因素统一至约束参数中,相关变量误差容限可作为MWP-FTS的设计依据。  相似文献   
8.
We have demonstrated earlier that maximum H2 generated @ 1.167 l/h/m2 over Cu0.02Ti0.98O2-δ photocatalyst with apparent quantum efficiency, AQE of 7.5% and solar fuel efficiency, SFE of 3.9% under sunlight. With an aim to scale-up the solar photocatalytic hydrogen process to pilot plant, optimization studies at lab scale as well as in upscaled photoreactors were performed over Cu0.02Ti0.98O2-δ, photocatalyst under UV/visible and sunlight. Cu0.02Ti0.98O2-δ was synthesized by facile sol-gel route and characterized by relevant techniques. Several operational parameters were investigated in order to finalize the conditions which are most favourable for photocatalytic hydrogen yield. Factors such as photocatalyst loadings, v/v concentration of sacrificial reagent, replacement of methanol by industrial waste glycerol, role of different configuration of light source with reactor, effect of stirring during the photocatalytic reaction, effect of fluctuations of solar flux at hourly basis, illumination area on hydrogen yield were studied. Contribution of each factor in determining the hydrogen yield was quantified. Relative standard deviation in hydrogen yield as a function of each factor was estimated. Our findings suggest that in addition to catalyst loadings and sacrificial reagent, improved dispersion of photocatalyst obtained by stirring the reaction mixture in horizontal geometry resulted in enhanced H2 yield. Hydrogen yield obtained at lab scale can be appropriately extrapolated with respect to illumination area instead of weight of photocatalyst. A relative standard deviation (RSD) of ± 3.82% and ± 4.53% in H2 yield was calculated for sunny and cloudy days in time zone of 10.30–16.30 h IST. Deviation of H2 yield was more on cloudy days and beyond 16:30 h. These studies have provided a daily window of 11:00–15:00 h to be utilized throughout the year for a commercial scaled up process, prohibiting the illumination during less productive hours of the day for shaping the improved economics of solar hydrogen generation. Our results obtained at lab scale would be useful to perform sunlight driven scaled –up photocatalytic process using low cost visible light efficient photocatalyst, Cu0.02Ti0.98O2-δ.  相似文献   
9.
Low-light images enhancement is a challenging task because enhancing image brightness and reducing image degradation should be considered simultaneously. Although existing deep learning-based methods improve the visibility of low-light images, many of them tend to lose details or sacrifice naturalness. To address these issues, we present a multi-stage network for low-light image enhancement, which consists of three sub-networks. More specifically, inspired by the Retinex theory and the bilateral grid technique, we first design a reflectance and illumination decomposition network to decompose an image into reflectance and illumination maps efficiently. To increase the brightness while preserving edge information, we then devise an attention-guided illumination adjustment network. The reflectance and the adjusted illumination maps are fused and refined by adversarial learning to reduce image degradation and improve image naturalness. Experiments are conducted on our rebuilt SICE low-light image dataset, which consists of 1380 real paired images and a public dataset LOL, which has 500 real paired images and 1000 synthetic paired images. Experimental results show that the proposed method outperforms state-of-the-art methods quantitatively and qualitatively.  相似文献   
10.
城市热环境变化影响城市小区域气候,探究影响因子与其作用机制,可有效减缓城市热岛现象。利用郑州市1960~2017年长序列数据,从相对热岛(RHI)和绝对热岛(AHI)两个层面探究驱动因子降雨(R)、蒸发(E)、建成区面积(BBUA)、城镇化率(UUR)的影响关系,利用交叉小波和小波相干探究热岛与降雨的雨热关系,采用Copula函数计算影响因子在不同取值条件下与热岛的遭遇概率。结果表明,相对热岛-相对降雨在短中周期、绝对热岛-降雨在短周期上均呈负相关关系,雨热关系不同步,且绝对热岛-降雨的关系最为显著;影响因子BBUA、UUR取值越大,R取值越小,则与RHI、AHI的遭遇概率越大;不同影响因子在不同评价层面,敏感性强弱不同,E在不同层面的反馈机制也不同,可见选取合适评价分析层面,有利于准确量化影响程度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号